

Global GreenTagEPD Program: Compliant to EN15804+A2 2019



Armstrong Flooring Pty Ltd Wall Covering Sheet Wallflex products 29-39 Mills Road, Braeside Victoria 3195

**Armstrong**Flooring<sup>®</sup>

## Armstrong Flooring

Wall Covering Sheet Wallflex products

#### **Mandatory Disclosures**

| EPD type                   | Cradle to grave A<br>C4 + D                                                                                                                         | 1 to                                                                                                                                                                  |                                      |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|
| EPD Number                 | ATX AS04 2022E                                                                                                                                      | P                                                                                                                                                                     |                                      |  |  |  |
| Issue Date                 | Day 17 <sup>th</sup> May 202                                                                                                                        | 2                                                                                                                                                                     |                                      |  |  |  |
| Valid Until                | Day 17 <sup>th</sup> May 202                                                                                                                        | 7                                                                                                                                                                     |                                      |  |  |  |
| Demonstration o            | of Verification                                                                                                                                     |                                                                                                                                                                       |                                      |  |  |  |
| PCR                        |                                                                                                                                                     | 04+A2 2019 serves as core Pi<br>Eloor Coverings applies [2]                                                                                                           | roduct Category Rules (PCR) [1]. Sub |  |  |  |
|                            | p. 0 ehgerod                                                                                                                                        | 2022 LCA and EPD by Delwy                                                                                                                                             | n Jones, Director Ecquate Pty Ltd    |  |  |  |
| ☑ Internal                 | 02 05 2022                                                                                                                                          | LCA Reviewed by Dires                                                                                                                                                 | shni Naiker Evah Associate           |  |  |  |
|                            | 24.05.2022                                                                                                                                          | P EPD Reviewed by David                                                                                                                                               | d Baggs, Global GreenTag Pty Ltd     |  |  |  |
|                            | amm                                                                                                                                                 | Third Party Verifier <sup>a</sup> Mat                                                                                                                                 | thilde Vlieg, MalaikaLCT             |  |  |  |
| ☑ External                 | a. Independent external verification of the declaration and data, mandatory for business-to-consumer communication according to ISO 14025:2010 [2]. |                                                                                                                                                                       |                                      |  |  |  |
| Communication              | This EPD discloses potential environmental outcomes compliant with EN 15804 business-to-business communication.                                     |                                                                                                                                                                       |                                      |  |  |  |
| Comparability              | Different program                                                                                                                                   | oduct EPDs may not be comparable if not EN15804 compliant.<br>m EPDs may not be comparable. Comparability is further dependent<br>ategory rules and data source used. |                                      |  |  |  |
| Reliability                |                                                                                                                                                     | are relative expressions that do not predict impacts on category<br>eeding of thresholds, products margins or risks.                                                  |                                      |  |  |  |
| Owner                      | This EPD is the p                                                                                                                                   | roperty of the declared manufa                                                                                                                                        | acturer.                             |  |  |  |
| Explanations               |                                                                                                                                                     | atory information is available at info@globalgreentag.com or by<br>ication1@globalgreentag.com [3].                                                                   |                                      |  |  |  |
| EPD Program Op             | perator                                                                                                                                             | LCA and EPD Producer                                                                                                                                                  | Declaration Owner                    |  |  |  |
| Global GreenTag            | Pty Ltd                                                                                                                                             | Ecquate Pty Ltd                                                                                                                                                       | Armstrong Flooring Pty Ltd           |  |  |  |
| PO Box 311 Canr            | non Hill                                                                                                                                            | PO Box 123 Thirroul                                                                                                                                                   | 29-39 Mills Road, Braeside           |  |  |  |
| QLD 4170 Australia         |                                                                                                                                                     | NSW 2515 Australia                                                                                                                                                    | Victoria 3195                        |  |  |  |
| Phone: +61 (0)7 33 999 686 |                                                                                                                                                     | Phone: +61 (0)7 5545 0998                                                                                                                                             | Phone: +61 (0)3 9586 5500            |  |  |  |

http://www.globalgreentag.com





http://www.evah.com.au



https://www.armstrongflooring.com

Armstrong Flooring\* Wall Covering Sheet Wallflex products

| Program Descriptio                                              | n         |           |             |           |                   |      |          |        |         |           |            |           |          |           |                  |          |         |          |           |
|-----------------------------------------------------------------|-----------|-----------|-------------|-----------|-------------------|------|----------|--------|---------|-----------|------------|-----------|----------|-----------|------------------|----------|---------|----------|-----------|
| EPD type                                                        | Cra       | adle      | to gi       | rave      | A1 to C           | C4 + | Da       | as de  | efine   | ed by     | y EN       | 158       | 04       | [1]       |                  |          |         |          |           |
| System boundary                                                 |           |           |             |           | ndary v<br>ufactu |      |          |        |         |           |            |           |          |           | •••              |          | •       |          | of life.  |
| Information<br>Modules                                          |           |           |             |           | all mo<br>ared (N |      |          |        |         |           |            |           |          |           |                  | h ze     | ero res | sults.   | Any       |
| Information                                                     |           |           |             |           | Buildi            | ng L | ife      | Cycl   | e In    | form      | atior      | ٦         |          |           |                  |          | Sup     | pleme    | entary    |
| Model                                                           | ŀ         | Actua     | al          |           |                   |      |          | S      | Scer    | naric     | s          |           |          |           |                  |          | F       | Poten    | tial      |
| Stages                                                          | Р         | rodu      | ict         | Cons      | struct            |      | -        |        | lding   | -         |            |           |          | d-of      | -life            |          |         | efit &   |           |
| -                                                               |           |           |             |           |                   |      |          | -abri  |         |           | Oper       |           |          |           |                  |          |         |          | ystem     |
| Modules                                                         | A1        | A2        | A3          | A4        | A5                | В    | B2       | B3     | B4      | B5        | BG         | B7        | õ        | 3         | ü                | 2        | 5       | D2       | D3        |
| Mandatory (M) &<br>Optional (O) Unit<br>Operations<br>Cradle to | Resources | Transport | Manufacture | Transport | Construct         | Use  | Maintain | Repair | Replace | Refurbish | Energy use | Water use | Demolish | Transport | Process<br>Waste | Disposal | Reuse   | Recovery | Recycling |
| Gate+ Options (O)                                               | Ма        | Indato    | nrv         | 0         | 0                 | 0    | 0        | 0      | 0       | 0         | 0          | 0         | 0        | 0         | 0                | 0        | 0       | 0        | 0         |
| Grave                                                           | IVIC      | muait     | Лу          | М         | М                 | М    | М        | М      | М       | М         | М          | М         | М        | М         | М                | Μ        | Μ       | Μ        | 0         |
| Scope Depiction                                                 |           |           | F           | igure     | e 1 EP            | DL   | ife (    | Cycl   | e Mo    | odu       | les C      | crad      | le t     | o G       | rave             |          |         |          |           |
| Stages included                                                 | A1        | -3 A      | 4-5,        | B1-5      | , C1-4            | & D  | 1. 5     | Stage  | es B    | 6-7       | and        | D2-3      | ha       | vez       | zero             | inpu     | it & oi | utput    | flows     |
| Stages excluded                                                 | No        | stag      | ge w        | as ex     | cludeo            | d bu | t B6     | 6-7 a  | nd E    | 02-3      | hav        | e ze      | ro fl    | ows       | s with           | ı ze     | ro res  | ults     |           |

#### **Data Sources and Quality**

| Primary Data                    | Data was collected from primary sources 2019 to 2022 including the manufacturer, suppliers and their publications on standards, locations, logistics, technology, market share, management system in accordance with EN ISO 14044:2006, 4.3.2, [4]. All are biochemical and physical allocated none are economically allocated. |                                                                                                                |                    |            |            |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|------------|------------|--|--|--|
| Variability Range               | Significant differe                                                                                                                                                                                                                                                                                                             | nces of average                                                                                                | e LCIA results are | declared.  |            |  |  |  |
| Data cut-off & quality criteria | ·                                                                                                                                                                                                                                                                                                                               | Complies with EN 15804 [1] The LCA used background data aged <10 years and<br>quality parameters tabled below. |                    |            |            |  |  |  |
| Background                      | Data Quality Parameters and Uncertainty (U)                                                                                                                                                                                                                                                                                     |                                                                                                                |                    |            |            |  |  |  |
| Correlation                     | Metric σg                                                                                                                                                                                                                                                                                                                       | U ±0.01                                                                                                        | U ±0.05            | U ±0.10    | U ±0.20    |  |  |  |
| Poliobility                     | Reporting                                                                                                                                                                                                                                                                                                                       | Site Audit                                                                                                     | Expert verify      | Region     | Sector     |  |  |  |
| Reliability                     | Sample                                                                                                                                                                                                                                                                                                                          | >66% trend                                                                                                     | >25% trend         | >10% batch | >5% batch  |  |  |  |
| Completion                      | Including                                                                                                                                                                                                                                                                                                                       | >50%                                                                                                           | >25%               | >10%       | >5%        |  |  |  |
| Completion                      | Cut-off                                                                                                                                                                                                                                                                                                                         | 0.01%w/w                                                                                                       | 0.05%w/w           | 0.1%w/w    | 0.5%w/w    |  |  |  |
| Tomporol                        | Data Age                                                                                                                                                                                                                                                                                                                        | <3 years                                                                                                       | ≤5 years           | <7.5 years | <10 years  |  |  |  |
| Temporal                        | Duration                                                                                                                                                                                                                                                                                                                        | >3 years                                                                                                       | <3 years           | <2 years   | 1 year     |  |  |  |
| Technology                      | Typology                                                                                                                                                                                                                                                                                                                        | Actual                                                                                                         | Comparable         | In Class   | Convention |  |  |  |
| Geography                       | Focus                                                                                                                                                                                                                                                                                                                           | Process                                                                                                        | Line               | Plant      | Corporate  |  |  |  |
|                                 | Range                                                                                                                                                                                                                                                                                                                           | Continent                                                                                                      | Nation             | Plant      | Line       |  |  |  |
|                                 | Representation                                                                                                                                                                                                                                                                                                                  | Global. Africa, America, Europe, Pacific Rim                                                                   |                    |            |            |  |  |  |

| <b>Armstrong</b> Floo | oring |
|-----------------------|-------|
|-----------------------|-------|

Wall Covering Sheet Wallflex products

| Product Information                |                                                                                                                                         |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Range name                         | Wallflex vinyl wall covering sheet                                                                                                      |
| Drend nemes                        | Wallflex                                                                                                                                |
| Brand names                        | Ovation                                                                                                                                 |
| Factory warranty                   | 10 years                                                                                                                                |
| Manufacturing site                 | 29-39 Mills Road, Braeside Victoria 3195                                                                                                |
| Site representation                | 29-39 Mills Road, Braeside Victoria 3195                                                                                                |
| Application                        | Resilient wall covering                                                                                                                 |
| Functional Performance in Building | Coated and reinforced resilient wall covering sheet                                                                                     |
| Specification                      | Interior mineral filled polyvinyl chloride sheet                                                                                        |
| Declared Unit                      | 1 kg = 0.29412 m <sup>2</sup> of Armstrong 2mm Homogeneous wall covering                                                                |
| Functional Unit                    | 20 years use of a kilogram of declared 3.4 kg/m <sup>2</sup> wall covering                                                              |
| Design Application                 | Hospitality, Health Care, Hospital, Aged Care, Education, Mercantile and Light Industrial sector buildings.                             |
| Practices Reference                | https://www.armstrongflooring.com/pdbupimages-flr/223755.pdf                                                                            |
| Installation Instructions          | https://www.armstrongflooring.com/pdbupimages-flr/225776.pdf                                                                            |
| Practicality                       | PUR coating aids maintenance. Design for uncomplicated or added frieze look.1.5 metre width ideal dado height for ease of installation. |
| Durability                         | Coating reduces maintenance and protects long term appearance. Excellent dent and gouge resistance. Improved indent resistance.         |

#### **Product Functional & Technical Performance**

This section provides manufacturer specifications, additional information and datapoints required to calculate assessment results factoring different mass and periods.

| Service Detail   | Standards   | Parameters                       | Conformance to Standards  |
|------------------|-------------|----------------------------------|---------------------------|
| Туре             |             | Wall covering type               | Homogeneous sheet vinyl   |
| Performance      | ISO 10581   | Homogeneous wall covering        | $\checkmark$              |
| Binder Content   |             | Туре                             | 2                         |
| Lifetime [5 & 6] | ISO 15686   | Reference Service Life (RSL)     | 20 years RSL              |
|                  | ISO 24340   | Wear Layer thickness             | 2.0mm                     |
| Dimensions       | ISO 24341   | Roll size width*length           | 1.5*20m                   |
|                  | ISO 24346   | Overall Thickness                | 2.0mm                     |
| VOC emissions    | ASTM D5116  | Volatile Organic Compound (VOC)  | <0.5mg/m <sup>2</sup> /hr |
| Fire Resistance  | AS 5637.1   | Cone calorimeter                 | Group 1                   |
| (Walling)        | AS/NZS 3837 | Average specific extinction area | <250m <sup>2</sup> /kg    |

**Armstrong**Flooring<sup>®</sup>

Wall Covering Sheet Wallflex products

#### **Product Components**

This section summarises factory components, functions, source nation and % mass share. In the product content listed below the % mass has a  $\pm$ 5% range and a confidence interval that is 90% certain to contain true population means at any time. This allows for intellectual property protection whilst ensuring fullest possible transparency. Listing such 90 $\pm$ 5% certainty also considers normal resource acquisition, supply chain, sedimentation, seasonal, manufacturing and product colour variation over this EPD's 5-year validity period.

#### Base material content range (%w/w)

| Base material con                                                           | tent range (////////                                                                                                                |                                                                |                                                         |                                                   |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|
| Function                                                                    | Component                                                                                                                           | Source                                                         | Wallflex %                                              | Ovation %                                         |
| Binder                                                                      | Polyvinyl Chloride                                                                                                                  | Taiwan                                                         | >20<25                                                  | >20<25                                            |
| Filler                                                                      | Limestone                                                                                                                           | Australia                                                      | >60<65                                                  | >60<65                                            |
| Plasticiser                                                                 | Dioctyl Terephthalate                                                                                                               | Mainland China                                                 | >5<10                                                   | >5<10                                             |
| White pigment                                                               | Titanium dioxide                                                                                                                    | Mainland China                                                 | >0.8<1.3                                                | >0.8<1.3                                          |
| Coating                                                                     | Polyurethane                                                                                                                        | Europe                                                         | >0.8<1.3                                                | >0.8<1.3                                          |
| Plasticiser                                                                 | Dioctyl adipate                                                                                                                     | South Korea                                                    | >0.7<1.2                                                | >0.7<1.2                                          |
| Stabiliser and plasticiser                                                  | Epoxidised Soybean Oil                                                                                                              | Taiwan                                                         | >0.7<1.2                                                | >0.7<1.2                                          |
| Process aid                                                                 | 30% Ethoxy nonyl phosphate                                                                                                          | Mainland China                                                 | >0.7<1.2                                                | >0.7<1.2                                          |
| Stabiliser                                                                  | Calcium Zinc Soap                                                                                                                   | Australia                                                      | >0.4<0.9                                                | >0.4<0.9                                          |
| Process aid                                                                 | Methyl Butyl methacrylate                                                                                                           | Mainland China                                                 | >0.4<0.8                                                | >0.4<0.8                                          |
| Lubricant                                                                   | Calcium Stearate                                                                                                                    | Australia                                                      | <0.1                                                    | <0.1                                              |
| Colour                                                                      | Pigments                                                                                                                            | Global                                                         | <0.1                                                    | <0.1                                              |
| Lubricant                                                                   | Stearic Acid                                                                                                                        | Indonesia                                                      | <0.1                                                    | <0.1                                              |
| Coating additive<br>& matte, cross-<br>linker, coupling<br>levelling agents | The six proprietary additives<br>included in LCA modelling<br>were all safety and hazard<br>checked.                                | Europe and<br>Taiwan                                           | <0.03 ea                                                | <0.03 ea                                          |
| Packing                                                                     |                                                                                                                                     |                                                                |                                                         |                                                   |
| Carton & core                                                               | Cardboard 90% PCR                                                                                                                   | Australia                                                      | 0.09                                                    | 0.09                                              |
| Wrap, spacer                                                                | Card & paper 90% PCR                                                                                                                | Australia                                                      | 0.83                                                    | 0.83                                              |
| Tape & liner                                                                | Polymer 55% PCR                                                                                                                     | Australia                                                      | 0.05                                                    | 0.05                                              |
| Spools                                                                      | Plastic                                                                                                                             | Australia                                                      | 0.04                                                    | 0.04                                              |
| Tape & label                                                                | Paper                                                                                                                               | Australia                                                      | 0.04                                                    | 0.04                                              |
| Completeness<br>No Chemicals of<br>Very High<br>Concern                     | Contains no substances in<br>Candidate Lists of Substances                                                                          |                                                                |                                                         | y "Authorised                                     |
| A1-A3 Stage<br>inclusions                                                   | Operations include raw mater<br>material reuse from prior sy<br>extraction, refining & transport<br>Also, transport to factory gate | vstems; electricity<br>plus secondary fue<br>s; manufacture of | generated from<br>el energy and re<br>inputs, ancillary | all sources v<br>covery process<br>material, prod |

packaging, maintenance, replacement plus flows leaving at end-of-waste boundary

ArmstrongWallflexEPD15804+A22019C2F@Evah17May2022v2.docx

as well as fates of all flows at end of life.

**Armstrong**Flooring<sup>®</sup>

Wall Covering Sheet Wallflex products

#### System Analysis Scope and Boundaries

Stages A1 to 3 model actual operations. Stage A4 to C4 are model scenarios. Typical scenarios are assumed to model forecast unit operations as described in the next section. Figure 2. shows included processes in a cradle to grave system boundary to end of life fates beyond the system boundary to unshown:

- reuse,
- recycling or
- landfill grave.

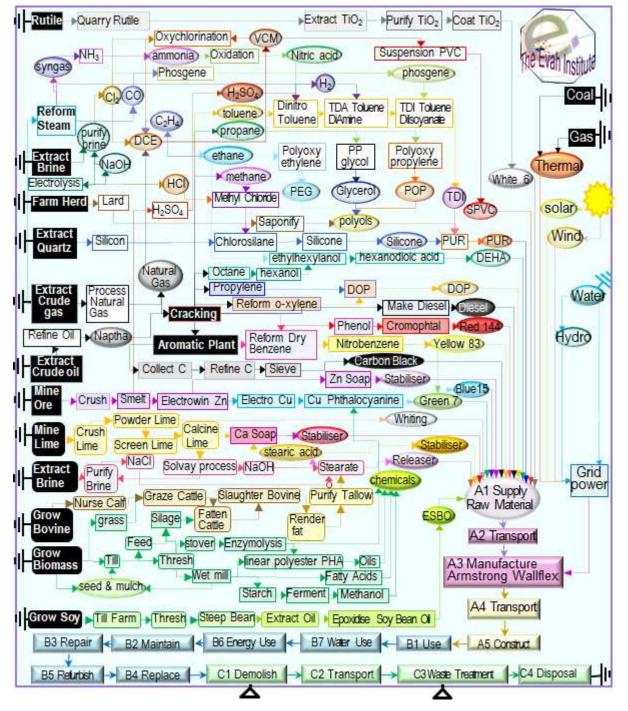



Figure 2. Product Process Flow Chart

### **Armstrong**Flooring<sup>®</sup>

Wall Covering Sheet Wallflex products

#### Scenarios for Modules (Units/Functional Unit)

This section defines modelling scenarios. Stages A1 to A3 model actual operations. Stage A4 to D3 model scenarios described as listed below.

#### A Construction

| A4 Transport to Site         | Type specified     | Amount   | Type specified    | Amount         |
|------------------------------|--------------------|----------|-------------------|----------------|
| Intercity road trucking      | 2t to 5t vans      | 220 km   | 85% Capacity      | Full back load |
| Long distance road trucking  | 25t semi-trailer   | 600 km   | 85% Capacity      | Full back load |
| Continental freight rail     | Diesel train       | 600 km   | 85% Capacity      | Full back load |
| Global container shipping    | Factory to CBD     | 1,200km  | 85% Capacity      | Full back load |
| Volume capacity (<1 to ≥1)   | Utilisation factor | 1        | Uncompressed      | Un-nested      |
| A5 Installation: Ancillaries | Adhesive           | 0.025 kg | Edge trim         | 0.0001 kg      |
| Packing                      | Cardboard          | 0.005 kg | Polymer           | 0.00001 kg     |
| Water & Energy               | Town water         | 0.00 m3  | Energy type       | 0.0 MJ         |
| Waste on site                | Trims              | 0.05 kg  | All packaging     | As declared kg |
| Scrap, collection & routes   | No recycling       | 0.0 kg   | Energy recovery   | 0.0 kg         |
| Emissions                    | Nil to air & water | 0.0 kg   | All from landfill | In LCA report  |

#### **B** Building

Stage B1 Use of building fabric has zero flows. Stage B2 and B3 scenarios are listed below. Stages B4 Replacement, B5 Refurbishment, B6 Building Operating Energy and B7 Building Operating Water each have zero flows

| B2 Maintenance            | Type specified | Amount     | Type specified  | Amount        |
|---------------------------|----------------|------------|-----------------|---------------|
| Maker's specified process | URL declared   | Specified  | Clean cycle     | Weekly        |
| Ancillary material (kg)   | Scrubber pads  | Negligible | Detergent       | 0.007kgpa     |
| Washing net water use     | Town water     | 1.95kgpa   | To drain 1.90   | kgpa          |
| Vacuum cleaning energy    | Once weekly    | 1.62MJpa   | Power mix       | Local AU mean |
| B3 Repair                 | Damaged parts  | 0.05kg     | Worn parts      | Same 5%       |
| Maker's specified process | As per website | Specified  | Freight to site | As A5         |
| Energy input & source     | No excess      | 0.0MJpa    | Packaging       | As A5         |

Stage C1, C2 and C4 scenarios are listed below. Stage C3 Waste Treatment has zero flows.

| C End Of Life                                                                           |   |
|-----------------------------------------------------------------------------------------|---|
| C1 Demolition       Type specified       Amount       Type specified       Amount       |   |
| Operation       Take up worn area       0.40kg       Collection       Separate          |   |
| Collection process       In site waste       0.40kg       Separate to reuse       0.0kg |   |
| C2 Transport 25t truck road 50km 85% capacity No back load                              | ł |
| C4 Disposal Product specific 0.40kg Collect separately 0.40kg                           |   |
| Typical Scenariohigh wear to landfill 40%All emissionsmass share                        |   |
| Recovery systemNo recycling0.0 kgNot for energy0.0 kg                                   |   |

Stage D1 scenario is listed below. Stages D2 Recovery and D3 Recycling have zero flows.

| D Beyond System Boundary |                 |        |                |        |
|--------------------------|-----------------|--------|----------------|--------|
| D1 Reuse                 | Type specified  | Amount | Type specified | Amount |
| Typical Scenario         | Retain low wear | 60%    | Reuse in place | 0.60kg |

**Armstrong**Flooring<sup>®</sup>

Wall Covering Sheet Wallflex products

#### **Environmental Impact Terminology**

Environmental impacts contributing to risks of social and ecological issues and collapse are tabled below with common names and remedies given for each indicator.

| Global<br>warming<br>forcing Climate<br>Change                     | Greenhouse gases absorb infra-red radiation. This heat reduces thermal energy differentials, from equator to poles, forcing ocean current and wind circulation to blend and regulate climate. Weakly blended "lumpier" weather has more frequent, extreme heat wave, fire-storm, cyclone, rain-storm, flood and blizzard events. Accumulation of carbon dioxide, natural gas methane, nitrous oxides and volatile organic compounds from burning fossil fuels causes global warming. Forest and wilderness growth absorbing air-borne carbon in biomass can drawdown such accumulation. Urgent renewable energy reliance is vital in time to avoid imminent tipping points and the worsening " <i>climate emergency</i> ". |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ozone layer<br>depletion                                           | Stratospheric ozone loss weakens the planet's solar shield so more shorter wavelength ultraviolet (UVB) light reaching earth damages plants and increases malignant melanoma and skin cancer in humans and animals. hydrochlorofluorocarbons, Chlorofluorocarbons, hydrobromofluorocarbons, chlorobromomethane, carbon tetrachloride, methyl chloroform, methyl bromide and halon gas cause ozone layer loss. To repair the "ozone hole" reliance on ozone-safe refrigerants, aerosols and solvents is essential to avoid further its depletion and enable accumulation of naturally-formed ozone.                                                                                                                         |
| Acidification                                                      | Acidification reduces soil and waterway pH, impedes nitrogen fixation vital for plant growth and inhibits natural decomposition. It increases rates and incidence of fish kills, forest loss and deterioration of buildings and materials. Chief synthetic causes of " <i>acid rain</i> " are emissions of sulphur and nitrogen oxides, hydrochloric and hydrofluoric acids and ammonia from burning <u>fossil fuels</u> polluting rain and snow precipitation world-wide.                                                                                                                                                                                                                                                 |
| Eutrophication<br>of terrestrial,<br>freshwater and<br>marine life | Eutrophication from excessively high macronutrient levels added to natural waters promotes excessive plant growth that severely reduces oxygen, water and habitat security for aquatic and terrestrial organisms across related ecosystems. Chief synthetic cause of " <i>algal blooms</i> " is nitrogen (N, NOx, NH <sub>4</sub> ) and phosphorus (P, PO <sub>4</sub> <sup>3-</sup> ) in rain run-off over-fertilised land catchments.                                                                                                                                                                                                                                                                                    |
| Photochemical ozone creation                                       | Tropospheric photochemical ozone, called " <i>summer smog</i> " near ground level, is created from natural and synthetic compounds in UV sunlight. Low concentration smog damages vegetation and crops. High concentration smog is hazardous to human health. Chief synthetic causes are nitrogen oxides, carbon monoxide and volatile organic compounds (VOC) pollutants. Avoiding reliance on dirtiest coal fuel and volatile chemicals has reduced smog incidence in many areas globally.                                                                                                                                                                                                                               |
| Depletion of<br>minerals,<br>metals & water                        | Abiotic depletion of finite mineral resources increases time, effort and money required to obtain more resources to the point of extinction of naturally viable reserves. This can limit access to available, valuable and scarce elements vital for human-life. The youth movement " <i>extinction rebellion</i> " calls on adults to secure climate, reserves and biodiversity for current and future generations.                                                                                                                                                                                                                                                                                                       |
| Depletion of<br>fossil fuel<br>reserves                            | Abiotic depletion of resources by consuming finite oil, natural gas, coal and yellowcake fossil fuel reserves leaves current and future generations suffering limited available, accessible, plentiful, essential valuable as well as scarce raw material, medicinal, chemical, feedstock and fuel stock. Approaching " <i>peak oil</i> " acknowledged fossil fuel reserves are finite and the need for decision-makers to act to avoid market instability, insecurity and or oil and gas wars.                                                                                                                                                                                                                            |

**Armstrong**Flooring<sup>®</sup>

Wall Covering Sheet Wallflex products

#### **Glossary of Terms and Units**

Impact Potentials, acronyms, methods and units are defined below Units **Impact Potentials** Acronym **Description of Methods Climate Change biogenic** GWP bio GWP biogenic [7] kg CO<sub>2eq</sub>. GWP ff **Climate Change fossil** GWP fossil fuels [7] kg CO<sub>2eq</sub>. **Climate Change land use GWP** luluc GWP land use & change [7] kg CO<sub>2eq</sub>. **Climate Change total** GWP Global Warming Potential [7] kg CO<sub>2eq</sub>. **Stratospheric Ozone Depletion** ODP Stratospheric Ozone Loss [8] kg CFC<sub>11eq</sub> POCP **Photochemical Ozone Creation** Summer Smog [9] kg NMOC eq AP **Acidification Potential** Accumulated Exceedance [10] mol H<sup>+</sup> eq **Eutrophication Freshwater** EP fresh Excess nutrients freshwater [11] kg P<sub>eq</sub> EP marine **Eutrophication Marine** Excess marine nutrients kg N eq EP land **Excess Terrestrial nutrients Eutrophication Terrestrial** mol N<sub>eq</sub> ADP min **Mineral & Metal Depletion** Abiotic Depletion minerals [12] kg Sb<sub>eq</sub> **Fossil Fuel Depletion** ADP fossil Abiotic Depletion fossil fuel [13] MJ ncv WDP Water Depletion Water Deprivation Scarcity [14, 15] m<sup>3</sup> WDP eq

Inventory inputs, acronyms, methods and units are defined below

|             | Input flows                 | Acronym | Description of Methods         | Units             |
|-------------|-----------------------------|---------|--------------------------------|-------------------|
|             | Fresh Water Net             | FW      | Lake, river, well & town water | m <sup>3</sup>    |
|             | Secondary Material          | SM      | Post-consumer recycled (PCR)   | kg                |
| e           | Secondary Fuel              | RSF     | PCR biomass burnt              | MJ <sub>ncv</sub> |
| vabl        | Primary Feedstock           | PERM    | Biomass retained material      | MJ <sub>ncv</sub> |
| Renewable   | Primary Energy not material | PERE    | Biomass fuels burnt            | MJ <sub>ncv</sub> |
|             | Primary Energy Total        | PERT    | Biomass burnt + retained       | MJ ncv            |
| ole         | Secondary Fuel              | NRSF    | PCR fossil-fuels burnt         | MJ ncv            |
| ewał        | Primary Feedstock           | PENRM   | Fossil feedstock retained      | MJ ncv            |
| Unrenewable | Primary Energy not material | PENRE   | fossil-fuel used or burnt      | MJ <sub>ncv</sub> |
| Ŋ           | Primary Energy Total        | PENRT   | Fossil feedstock & fuel use    | MJ ncv            |

Outputs, acronyms, methods and units are defined below

| Inventory Output flows       | Acronym | Description of Methods             | Units             |
|------------------------------|---------|------------------------------------|-------------------|
| Hazardous Waste Disposed     | HWD     | Processed to contain hazard risks  | kg                |
| Non-hazardous Waste Disposed | NHWD    | Municipal landfill facility waste  | kg                |
| Radioactive Waste Disposed   | RWD     | Mostly nuclear power station waste | kg                |
| Components For Reuse         | CRU     | Production scrap for reuse as is   | kg                |
| Material For Recycling       | MFR     | Production scrap for remanufacture | kg                |
| Material For Energy Recovery | MER     | Production scrap for use as fuel   | kg                |
| Exported Energy Electrical   | EEE     | Common for buildings not products  | MJ nev            |
| Exported Energy Thermal      | EET     | Common for buildings not products  | MJ <sub>ncv</sub> |

ArmstrongWallflexEPD15804+A22019C2F@Evah17May2022v2.docx

Page 9 of 15

### **Armstrong**Flooring<sup>®</sup>

Wall Covering Sheet Wallflex products

#### Module A1 to C4 Impact Results Cradle to Grave

Table 1.0 shows results in declared units/functional unit across A1 to A5, B2, B3, C1, C2 and C4. All flows and hence results were zero in B1 Use of building fabric, B4 Replacement, B5 Refurbishment, B6 Building Operating Energy, B7 Building Operating Water and C3 Waste Treatment.

#### Table 1.0 A1 to C4 Impact Results/Functional Unit

| Wallflex 2.0mm   | A1-3 Acquire<br>Transport &<br>Manufacture | A4 Transport | A5 Construct | B2 Maintain | B3 Repair | C1 Demolish | C2 Transport | C4 Disposal |
|------------------|--------------------------------------------|--------------|--------------|-------------|-----------|-------------|--------------|-------------|
| GWP biogenic     | -0.53                                      | -1.1E-06     | -0.012       | -0.091      | -4.0E-03  | -2.1E-04    | -8.8E-07     | 0           |
| GWP luluc        | 4.4E-04                                    | 1.7E-09      | 6.0E-06      | 7.33E-06    | 4.21E-07  | 2.0E-08     | 1.4E-09      | 3.5E-03     |
| GWP fossil       | 2.53                                       | 0.02         | 0.30         | 0.62        | 0.23      | 1.8E-03     | 6.1E-03      | 7.1E-03     |
| GWP total        | 2.00                                       | 0.02         | 0.29         | 0.53        | 0.23      | 1.6E-03     | 6.1E-03      | 1.1E-02     |
| Ozone loss ODP   | 4.3E-08                                    | 1.7E-13      | 1.2E-08      | 3.0E-09     | 5.9E-09   | 6.8E-12     | 1.1E-13      | 7.1E-08     |
| Smog POCP        | 1.3E-02                                    | 1.2E-04      | 1.9E-03      | 3.3E-03     | 1.4E-03   | 9.6E-06     | 6.0E-05      | 6.1E-04     |
| Acidification AP | 5.5E-03                                    | 1.2E-05      | 8.3E-04      | 1.4E-03     | 6.5E-04   | 4.1E-06     | 5.1E-06      | 1.1E-03     |
| EP freshwater    | 3.1E-06                                    | 5.6E-10      | 2.3E-05      | 5.9E-07     | 2.2E-05   | 1.4E-09     | 3.1E-10      | 3.1E-04     |
| EP marine        | 1.1E-03                                    | 2.3E-06      | 1.7E-04      | 2.4E-04     | 1.3E-04   | 7.4E-07     | 9.5E-07      | 2.6E-05     |
| EP terrestrial   | 5.7E-03                                    | 7.9E-06      | 1.1E-03      | 1.8E-03     | 9.9E-04   | 5.4E-06     | 3.4E-06      | 4.2E-05     |
| ADP fossil       | 2.52                                       | 2.3E-02      | 0.26         | 0.53        | 0.19      | 1.5E-03     | 7.5E-03      | 0           |
| ADP mineral      | 6.3E-04                                    | 7.2E-06      | 4.6E-05      | 2.9E-04     | 2.2E-05   | 6.6E-07     | 4.0E-06      | 0           |
| WDP water        | 2.5E-02                                    | 3.0E-06      | 5.2E-03      | 9.8E-03     | 2.7E-03   | 2.3E-05     | 1.4E-06      | 0           |
| Ovation          |                                            |              |              |             |           |             |              |             |
| GWP biogenic     | -0.53                                      | -1.1E-06     | -0.012       | -0.091      | -4.0E-03  | -2.1E-04    | -8.8E-07     | 0           |
| GWP luluc        | 4.4E-04                                    | 1.7E-09      | 6.0E-06      | 7.33E-06    | 4.21E-07  | 2.0E-08     | 1.4E-09      | 3.5E-03     |
| GWP fossil       | 2.53                                       | 0.02         | 0.30         | 0.62        | 0.23      | 1.8E-03     | 6.1E-03      | 7.1E-03     |
| GWP total        | 2.00                                       | 0.02         | 0.29         | 0.53        | 0.23      | 1.6E-03     | 6.1E-03      | 1.1E-02     |
| Ozone loss ODP   | 4.3E-08                                    | 1.7E-13      | 1.2E-08      | 3.0E-09     | 5.9E-09   | 6.8E-12     | 1.1E-13      | 7.1E-08     |
| Smog POCP        | 1.3E-02                                    | 1.2E-04      | 1.9E-03      | 3.3E-03     | 1.4E-03   | 9.6E-06     | 6.0E-05      | 6.1E-04     |
| Acidification AP | 5.5E-03                                    | 1.2E-05      | 8.3E-04      | 1.4E-03     | 6.5E-04   | 4.1E-06     | 5.1E-06      | 1.1E-03     |
| EP freshwater    | 3.1E-06                                    | 5.6E-10      | 2.3E-05      | 5.9E-07     | 2.2E-05   | 1.4E-09     | 3.1E-10      | 3.1E-04     |
| EP marine        | 1.1E-03                                    | 2.3E-06      | 1.7E-04      | 2.4E-04     | 1.3E-04   | 7.4E-07     | 9.5E-07      | 2.6E-05     |
| EP terrestrial   | 5.7E-03                                    | 7.9E-06      | 1.1E-03      | 1.8E-03     | 9.9E-04   | 5.4E-06     | 3.4E-06      | 4.2E-05     |
| ADP fossil       | 2.52                                       | 2.3E-02      | 0.26         | 0.53        | 0.19      | 1.5E-03     | 7.5E-03      | 0           |
| ADP mineral      | 6.3E-04                                    | 7.2E-06      | 4.6E-05      | 2.9E-04     | 2.2E-05   | 6.6E-07     | 4.0E-06      | 0           |

ArmstrongWallflexEPD15804+A22019C2F@Evah17May2022v2.docx

**Armstrong**Flooring<sup>®</sup>

Wall Covering Sheet Wallflex products

Table 2.0 shows product LCI inputs/functional unit across stages A1 to A5, B2, B3, C1, C2 and C4. All flows and hence results were zero in stages: B1 Use of building fabric, B4 Replacement, B5 Refurbishment, B6 Building Operating Energy, B7 Building Operating Water and C3 Waste Treatment.

#### Table 2.0 A1 to C4 Inventory Results /Functional Unit

| Wallflex 2.0mm |             | Wallflex 2.0mm                 | A1-3 Acquire<br>Transport &<br>Manufacture | A4 Transport | A5 Construct | B2 Maintain | B3 Repair | C1 Demolish | C2 Transport | C4 Dispose |
|----------------|-------------|--------------------------------|--------------------------------------------|--------------|--------------|-------------|-----------|-------------|--------------|------------|
|                |             | Fresh Water Net                | 0.16                                       | 1.8E-05      | 3.2E-02      | 6.1E-02     | 1.7E-02   | 1.4E-04     | 8.7E-06      | 0          |
|                |             | Secondary Material             | 0.29                                       | 2.9E-06      | 0.025        | 0.044       | 0.014     | 4.1E-04     | 2.2E-06      | 0          |
|                |             | Secondary Fuel                 | 0.43                                       | 6.75E-06     | 0.011        | 0.20        | 0.006     | 4.71E-04    | 5.12E-06     | 0          |
|                | Renewable   | Primary Energy not<br>material | 8,64                                       | 3.0E-04      | 0.200        | 0.41        | 0.071     | 1.2E-03     | 2.0E-04      | 0          |
|                | Rene        | Primary Feedstock              | 0.31                                       | 2.4E-03      | 0.034        | 1.00        | 0.027     | 2.3E-03     | 1.6E-03      | 0          |
|                |             | Primary Energy<br>Total        | 8.95                                       | 2.7E-03      | 0.0234       | 1.41        | 0.098     | 3.5E-03     | 1.8E-03      | 0          |
| Unrenewable    | Ð           | Secondary Fuel                 | 0.23                                       | 7.4E-04      | 1.9E-04      | 0.039       | 3.0E-03   | 8.9E-05     | 4.8E-04      | 0          |
|                | ewabl       | Primary Energy not<br>material | 35.1                                       | 0.11         | 3.76         | 7.74        | 2.98      | 2.2E-02     | 6.4E-02      | 0          |
|                | nren        | Primary Material               | 17.5                                       | 0.19         | 1.63         | 1.57        | 1.03      | 3.7E-03     | 3.7E-02      | 0          |
|                | ō           | Primary Energy<br>Total        | 52.55                                      | 0.30         | 5.38         | 9.31        | 4.01      | 2.6E-02     | 1.0E-01      | 0          |
| Ovation        |             | Ovation                        |                                            |              |              |             |           |             |              |            |
|                |             | Fresh Water Net                | 0.16                                       | 1.8E-05      | 3.2E-02      | 6.1E-02     | 1.7E-02   | 1.4E-04     | 8.7E-06      | 0          |
|                |             | Secondary Material             | 0.29                                       | 2.9E-06      | 0.025        | 0.044       | 0.014     | 4.1E-04     | 2.2E-06      | 0          |
|                |             | Renewable<br>Secondary Fuel    | 0.43                                       | 6.75E-06     | 0.011        | 0.20        | 0.006     | 4.71E-04    | 5.12E-06     | 0          |
|                | ole         | Primary Energy not<br>material | 8.64                                       | 3.0E-04      | 0.200        | 0.41        | 0.071     | 1.2E-03     | 2.0E-04      | 0          |
|                | Renewable   | Primary Feedstock              | 0.31                                       | 2.4E-03      | 0.034        | 1.00        | 0.027     | 2.3E-03     | 1.6E-03      | 0          |
| 1              | Ren         | Primary Energy<br>Total        | 8.95                                       | 2.7E-03      | 0.0234       | 1.41        | 0.098     | 3.5E-03     | 1.8E-03      | 0          |
|                |             | Secondary Fuel                 | 0.23                                       | 7.4E-04      | 1.9E-04      | 0.039       | 3.0E-03   | 8.9E-05     | 4.8E-04      | 0          |
|                | Unrenewable | Primary Energy not<br>Material | 35.1                                       | 0.11         | 3.76         | 7.74        | 2.98      | 2.2E-02     | 6.4E-02      | 0          |
|                | renev       | Primary Material               | 17.5                                       | 0.19         | 1.63         | 1.57        | 1.03      | 3.7E-03     | 3.7E-02      | 0          |
|                | On          | Primary Energy<br>Total        | 52.55                                      | 0.30         | 5.38         | 9.31        | 4.01      | 2.6E-02     | 1.0E-01      | 0          |

**Armstrong**Flooring<sup>®</sup>

Wall Covering Sheet Wallflex products

Table 3.0 lists all other modules' product outputs in declared units/functional unit for stage A1 to A5, B2, B3, C1, C2 and C4. All results are zero for stages: B1 Use of building fabric, B4 Replacement, B5 Refurbishment, B6 Building Operating Energy, B7 Building Operating Water and C3 Waste Processing.

#### Table 3.0 Module A1 to C4 Output Results/Functional Unit

| Wallflex 2.0mm                  | A1-3 Acquire<br>Transport &<br>Manufacture | A4 Transport | A5 Construction | B2 Maintain | B3 Repair | C1 Demolition | C2 Transport | C4 Disposal |
|---------------------------------|--------------------------------------------|--------------|-----------------|-------------|-----------|---------------|--------------|-------------|
| Hazardous Waste<br>Disposed     | 6.4E-03                                    | 3.7E-05      | 8.9E-04         | 9.1E-04     | 6.2E-04   | 2.1E-06       | 1.2E-05      | 0           |
| Non-hazardous Waste<br>Disposed | 0.23                                       | 3.1E-04      | 5.2E-02         | 9.9E-02     | 4.0E-02   | 2.3E-04       | 9.7E-05      | 4.0E-01     |
| Radioactive Waste<br>Disposed   | 6.3E-16                                    | 1.1E-31      | 4.5E-17         | 2.5E-17     | 2.3E-17   | 5.8E-20       | 8.5E-32      | 0           |
| Components For<br>Reuse         | 3.0E-02                                    | 4.4E-3       | 2.6E-04         | 1.7E-3      | 6.8E-3    | 3.8E-3        | 3.5E-3       | 0           |
| Material For Recycling          | 1.9E-02                                    | 6.4E-06      | 3.2E-02         | 7.1E-02     | 3.4E-03   | 1.7E-04       | 4.6E-06      | 0           |
| Material For Energy<br>Recovery | 5.4E-03                                    | 2.3E-07      | 2.7E-04         | 3.2E-05     | 1.2E-04   | 7.5E-08       | 1.5E-07      | 0           |
| Exported Energy<br>Electrical   | 0                                          | 0            | 0               | 0           | 0         | 0             | 0            | 0           |
| Exported Energy<br>Thermal      | 0                                          | 0            | 0               | 0           | 0         | 0             | 0            | 0           |
| Ovation                         |                                            |              |                 |             |           |               |              |             |
| Hazardous Waste<br>Disposed     | 6.4E-03                                    | 3.7E-05      | 8.9E-04         | 9.1E-04     | 6.2E-04   | 2.1E-06       | 1.2E-05      | 0           |
| Non-hazardous Waste<br>Disposed | 0.23                                       | 3.1E-04      | 5.2E-02         | 9.9E-02     | 4.0E-02   | 2.3E-04       | 9.7E-05      | 4.0E-01     |
| Radioactive Waste<br>Disposed   | 6.3E-16                                    | 1.1E-31      | 4.5E-17         | 2.5E-17     | 2.3E-17   | 5.8E-20       | 8.5E-32      | 0           |
| Components For<br>Reuse         | 3.0E-02                                    | 4.4E-3       | 2.6E-04         | 1.7E-3      | 6.8E-3    | 3.8E-3        | 3.5E-3       | 0           |
| Material For Recycling          | 1.9E-02                                    | 6.4E-06      | 3.2E-02         | 7.1E-02     | 3.4E-03   | 1.7E-04       | 4.6E-06      | 0           |
| Material For Energy<br>Recovery | 5.4E-03                                    | 2.3E-07      | 2.7E-04         | 3.2E-05     | 1.2E-04   | 7.5E-08       | 1.5E-07      | 0           |
| Exported Energy<br>Electrical   | 0                                          | 0            | 0               | 0           | 0         | 0             | 0            | 0           |
| Exported Energy<br>Thermal      | 0                                          | 0            | 0               | 0           | 0         | 0             | 0            | 0           |

**Armstrong**Flooring<sup>®</sup>

Wall Covering Sheet Wallflex products

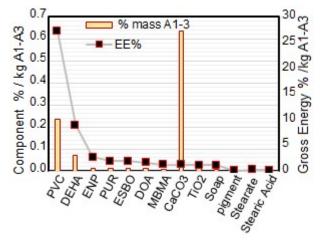
#### Module D Results Beyond System Boundaries

Table 4 shows Module D Beyond system boundaries D1 Reuse stage credits products results /functional unit as negatives as they reduce the impacts over the building life. All flows and results were zero for D1 Exported Energy Electrical (EEE) and Thermal (EET) as well as D2 Recovery and D3 Recycling.

#### Table 4 D1 Reuse Results /Functional Unit

| Climate Change GWP biogenic-0.32-0.32Climate Change GWP fossil-2.6E-04-2.6E-04Climate Change GWP luluc-1.52-1.52Climate Change GWP total-1.20-1.20Ozone Depletion Potential-2.6E-08-2.6E-08Photochemical Ozone Potential-8.0E-03-8.0E-03Acidification Potential-3.3E-03-3.3E-03Eutrophication freshwater-1.8E-06-1.8E-06Eutrophication terrestrial-3.4E-03-3.4E-03Mineral & Metal Depletion-1.51-1.51Fossil Fuel Depletion-3.8E-04-3.8E-04Water Depletion-1.5E-02-1.5E-02Inventory input flows-0.09-0.09 |          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Climate Change GWP luluc-1.52-1.52Climate Change GWP total-1.20-1.20Ozone Depletion Potential-2.6E-08-2.6E-08Photochemical Ozone Potential-8.0E-03-8.0E-03Acidification Potential-3.3E-03-3.3E-03Eutrophication freshwater-1.8E-06-1.8E-06Eutrophication marine-6.9E-04-6.9E-04Eutrophication terrestrial-3.4E-03-3.4E-03Mineral & Metal Depletion-1.51-1.51Fossil Fuel Depletion-3.8E-04-3.8E-04Water Depletion-1.5E-02-1.5E-02Inventory input flows-1.5E-02-1.5E-02                                    |          |  |
| Climate Change GWP total-1.20Ozone Depletion Potential-2.6E-08Photochemical Ozone Potential-8.0E-03-8.0E-03-8.0E-03Acidification Potential-3.3E-03Eutrophication freshwater-1.8E-06Eutrophication marine-6.9E-04Eutrophication terrestrial-3.4E-03Mineral & Metal Depletion-1.51Fossil Fuel Depletion-3.8E-04Water Depletion-1.5E-02Inventory input flows-1.5E-02                                                                                                                                        |          |  |
| Ozone Depletion Potential-2.6E-08-2.6E-08Photochemical Ozone Potential-8.0E-03-8.0E-03Acidification Potential-3.3E-03-3.3E-03Eutrophication freshwater-1.8E-06-1.8E-06Eutrophication marine-6.9E-04-6.9E-04Eutrophication terrestrial-3.4E-03-3.4E-03Mineral & Metal Depletion-1.51-1.51Fossil Fuel Depletion-3.8E-04-3.8E-04Water Depletion-1.5E-02-1.5E-02Inventory input flows                                                                                                                        |          |  |
| Photochemical Ozone Potential-8.0E-03Acidification Potential-3.3E-03Eutrophication freshwater-1.8E-06Eutrophication marine-6.9E-04Eutrophication terrestrial-3.4E-03Mineral & Metal Depletion-1.51Fossil Fuel Depletion-3.8E-04Water Depletion-1.5E-02Inventory input flows                                                                                                                                                                                                                              |          |  |
| Acidification Potential-3.3E-03-3.3E-03Eutrophication freshwater-1.8E-06-1.8E-06Eutrophication marine-6.9E-04-6.9E-04Eutrophication terrestrial-3.4E-03-3.4E-03Mineral & Metal Depletion-1.51-1.51Fossil Fuel Depletion-3.8E-04-3.8E-04Water Depletion-1.5E-02-1.5E-02Inventory input flows                                                                                                                                                                                                              |          |  |
| Eutrophication freshwater-1.8E-06-1.8E-06Eutrophication marine-6.9E-04-6.9E-04Eutrophication terrestrial-3.4E-03-3.4E-03Mineral & Metal Depletion-1.51-1.51Fossil Fuel Depletion-3.8E-04-3.8E-04Water Depletion-1.5E-02-1.5E-02Inventory input flows                                                                                                                                                                                                                                                     |          |  |
| Eutrophication marine-6.9E-04-6.9E-04Eutrophication terrestrial-3.4E-03-3.4E-03Mineral & Metal Depletion-1.51-1.51Fossil Fuel Depletion-3.8E-04-3.8E-04Water Depletion-1.5E-02-1.5E-02Inventory input flows                                                                                                                                                                                                                                                                                              |          |  |
| Eutrophication terrestrial-3.4E-03-3.4E-03Mineral & Metal Depletion-1.51-1.51Fossil Fuel Depletion-3.8E-04-3.8E-04Water Depletion-1.5E-02-1.5E-02Inventory input flows                                                                                                                                                                                                                                                                                                                                   |          |  |
| Mineral & Metal Depletion-1.51-1.51Fossil Fuel Depletion-3.8E-04-3.8E-04Water Depletion-1.5E-02-1.5E-02Inventory input flows                                                                                                                                                                                                                                                                                                                                                                             |          |  |
| Fossil Fuel Depletion-3.8E-04-3.8E-04Water Depletion-1.5E-02-1.5E-02Inventory input flows-1.5E-02-1.5E-02                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| Water Depletion   -1.5E-02   -1.5E-02     Inventory input flows   -1.5E-02                                                                                                                                                                                                                                                                                                                                                                                                                               |          |  |
| Inventory input flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |  |
| Fresh Water Net       -0.09       -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |  |
| Secondary Material -1.7E-01 -1.7E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |  |
| Renewable Secondary Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |  |
| Primary Energy Feedstock -0.17 -0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |  |
| Primary Energy Feedstock-0.09-0.09Primary Energy not Material-0.26-0.26Primary Energy Total5.185.18                                                                                                                                                                                                                                                                                                                                                                                                      |          |  |
| Primary Energy Total   -5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |  |
| Secondary Fuel -0.19 -0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |  |
| Primary Energy not Material -5.37 -5.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |  |
| Secondary Fuel-0.19-0.19Primary Energy not Material-5.37-5.37Primary Energy Feedstock-0.14-0.14Primary Energy Total04.0004.00                                                                                                                                                                                                                                                                                                                                                                            |          |  |
| 5 Primary Energy Total -21.06 -21.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |  |
| Inventory output flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |  |
| Hazardous Waste Disposed-3.9E-03-3.9E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |  |
| Non-hazardous Waste Disposed -0.16 -0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.16    |  |
| Radioactive Waste Disposed-3.8E-16-3.8E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.8E-16 |  |
| Components For Reuse -1.8E-02 -1.8E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |  |
| Material For Recycling-1.1E-02-1.1E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |  |
| Material For Energy Recovery-3.2E-03-3.2E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |  |

### **Armstrong**Flooring


Wall Covering Sheet Wallflex products

#### Interpretation

This section interprets results. Table 5 lists component content % mass share versus Global Warming Potential (GWP kg CO<sub>2e</sub>) and % share gross embodied energy (EE) results/kg products cradle to gate A1 to A3. It shows Stearic acid with biogenic carbon and negative GWP indicating drawdown by photosynthesis offsetting climate change.

Figure 3 charts mass % versus gross % share EE results/kg cradle to gate A1 to A3. Result show highest sensitivity to PVC binder content and least sensitivity to limestone (CaCO<sub>3</sub>) filler content.

Figure 4 charts GWP versus Abiotic Depletion of Fossil Fuel (ADPFF) results/kg A1 to A3. It shows most GWP emissions from electricity usage then PVC binder, thirdly natural gas use and fourthly DEHA plasticiser content.





| Table 5 Component EE% Vs GWP/kg |       |      |       |  |  |  |  |  |
|---------------------------------|-------|------|-------|--|--|--|--|--|
| Component                       | Mass% | EE%  | GWP   |  |  |  |  |  |
| CaCO <sub>3</sub>               | <65   | 1.23 | 0.08  |  |  |  |  |  |
| PVC                             | <25   | 27.1 | 2.61  |  |  |  |  |  |
| DOTP                            | <10   | 8.94 | 2.10  |  |  |  |  |  |
| TiO <sub>2</sub>                | <1.3  | 1.13 | 3.62  |  |  |  |  |  |
| PUR                             | <1.3  | 1.95 | 4.48  |  |  |  |  |  |
| DEHA                            | <1.2  | 1.67 | 4.33  |  |  |  |  |  |
| ESBO                            | <1.2  | 1.87 | 3.91  |  |  |  |  |  |
| ENP                             | <1.2  | 2.7  | 2.63  |  |  |  |  |  |
| Soap                            | <0.9  | 1.1  | 3.68  |  |  |  |  |  |
| MBMA                            | <0.8  | 1.25 | 4.98  |  |  |  |  |  |
| Stearate                        | <0.1  | 0.22 | 4.09  |  |  |  |  |  |
| Pigment                         | <0.1  | 0.08 | 2.24  |  |  |  |  |  |
| Stearic acid                    | <0.1  | 0.12 | -1.70 |  |  |  |  |  |

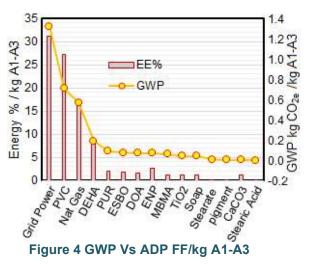
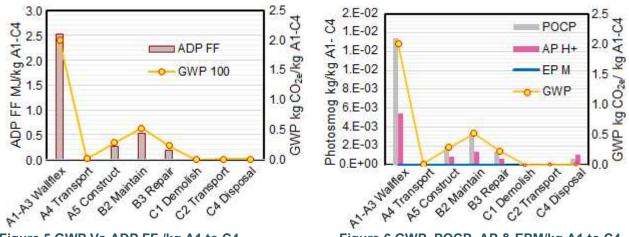




Figure 5 charts A1 to C4 GWP results versus ADP FF/kg product. Figure 6 charts A1 to C4 Photochemical Smog (POCP), Acidification (AP H+), Marine Eutrophication (EPM) and GWP results/kg product. Both charts show A1 to A3 product manufacture highest results and B2 maintenance (cleaning) second highest. A3 Construct (Install) and B3 Repair are third but other stages have no significance.



#### Figure 5 GWP Vs ADP FF /kg A1 to C4

Figure 6 GWP, POCP, AP & EPM/kg A1 to C4

Module D Beyond System Boundary results show typical D1 Reuse of 60% of least-worn product in low traffic rooms and areas for 40 more years reduces all impacts >40%/kg for a 60-year building life with the same new product to 40% of wall area in high traffic areas. Results for phases A4 to C4 are significant and these remain unchanged for replacement product over the building life.

ArmstrongWallflexEPD15804+A22019C2F@Evah17May2022v2.docx

**Armstrong**Flooring<sup>®</sup>

Wall Covering Sheet Wallflex products

#### References

- [1] EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations -Core rules for the product category of construction products.
- [2] GreenTag<sup>™</sup> 2021 EPD Program, Product Category Rules https://www.globalgreentag.com/EPD.
- [3] ISO 14025:2010 Environmental labels and declarations Type III environmental declarations Principles and procedures.
- [4] ISO14044:2006 Environmental management LCA Requirements and guidelines.
- [5] ISO 15686-2:2012 Buildings and constructed assets Service life planning Part 2: Service life prediction procedures.
- [6] ISO 15686-8:2008 Buildings and constructed assets Service-life planning Part 8: Reference service life and service-life estimation.
- [7] IPCC 2013, Global Warming Potential 100-year, IPCC Fifth Assessment Report Climate Change.
- [8] WMO 2014, Ozone Depletion Potentials for Steady-state, Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report No. 55, 2014.
- [9] Van Zelm, R., Huijbregts, M., Hollander, H., Jaarsveld, H., Sauter, F., Struijs, J., Wijnen, H., Van de meent, D. 2008, European characterization factors for human health damage of PM10 and ozone in LCIA, J of Atmos Environ 42(3):441-453, LOTOS-EUROS. DOI:10.1016/j.atmosenv.2007.09.072
- [10] Seppälä, J., Posch, M., Johansson, M. & Hettelingh, J-P. 2006 Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator, T I J of LCA 11(6):403-416 Nov 2006 DOI:10.1065/lca2005.06.215
- [11] Posch, M., Seppälä, J., Hettelingh, J-P. & Johansson, M., (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA, I J of LCA 13(6):477-486., DOI:10.1007/s11367-008-0025-9
- [12] Struijs, J., Beusen, A., van Jaarsveld, H. & Huijbregts, M.A.J. (2009b). Aquatic Eutrophication. Ch 6 in: Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R. (2009). ReCiPe 2008 A LCIA method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, 1<sup>st</sup> Ed. EUTREND model.
- [13] CML–IA V4.1 LCA methodology, 2002, October 2012, CML University of Leiden, Netherlands.
- [14] Guinée et al., 2002, and van Oers et al., 2002 CML LCA methodology 2002a, Institute of Environmental Sciences (CML), Faculty of Science, University of Leiden, Netherlands.
- [15] Boulay, A-M., Bare, J., Benini, L., Berger, M., Lathuilliere, M., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A., Ridoutt, B., Oki, T., Worbe, S. & Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). I J of LCA. 23. 1-11. 10.1007/s11367-017-1333-8.

#### Bibliography

Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, 10.13140/RG.2.1.2383.4485 UN EP Life Cycle Initiative

EN ISO 14024:2000, Environmental labels and declarations - Type I environmental labelling -Principles and procedures (ISO 14024:1999).

EN ISO 14040:2006, Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006).

EN 15643-1:2010, Sustainability of construction works - Sustainability assessment of buildings - Part 1: General framework.

EN 15643-2, Sustainability of construction works - Assessment of buildings - Part 2: Framework for the assessment of environmental performance.

EN 16449, Wood and wood-based products - Calculation of the biogenic carbon content of wood and conversion to carbon dioxide.

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products.

ISO 21931-1:2010, Sustainability in building construction - Framework for methods of assessment of the environmental performance of construction works - Part 1: Buildings.